Dr. Muhammed Saeed K

Assistant Professor on Contract

[email protected]

Date Joined : 2024-06-01

Biography

Previous Experiences

  • Ad-hoc Faculty - NIT Calicut - From Aug 2023 To May 2024
  • Total 1.5 Years of Teaching Experience 

Papers Presented 

  • NCMAA 2022, NIT Tiruchirapalli, Tamil Nadu April 23 – 24, 2021

    Paper Presented: "Semi-local convergence analysis of a fifth-order iterative method using only First Fréchet derivative."

Publications (Conference Proceedings/Journals/Book Chapters)

  • Saeed, M. K., Remesh, K., George, S., Padikkal, J., & Argyros, I. K. (2023). "Local Convergence of Traub’s Method and Its Extensions." Fractal Fract., 7(1), 98. [DOI: 10.3390/fractalfract7010098] - January 16, 2023 (SCIE)
  • Remesh, K., Argyros, I. K., Saeed, M. K., George, S., & Padikkal, J. (2022). "Extending the Applicability of Cordero Type Iterative Method." Symmetry, 14(12), 2495. [DOI: 10.3390/sym14122495] (SCIE)
  • Krishnendu, R., Saeed, M. K., George, S., & Jidesh, P. (2022). "On Newton’s Midpoint-Type Iterative Scheme’s Convergence." International Journal of Applied and Computational Mathematics, 8(5), 1–11. [DOI: 10.1007/s40819-022-01468-1] (SCOPUS)
  • Muhammed Saeed, K., Krishnendu, R., George, S., & Padikkal, J. (2022). "On the convergence of Homeier method and its extensions." The Journal of Analysis, 1–12. [DOI: 10.1007/s41478-022-00449-3] (SCOPUS)
  • George, S., Saeed, M. K., Argyros, I. K., & Jidesh, P. (2022). "An apriori parameter choice strategy and a fifth-order iterative scheme for the Lavrentiev regularization method." AJ. Appl. Math.Comput. [DOI: 10.1007/s12190-022-01782-3] (SCOPUS)
  • George, S., Argyros, I. K., Jidesh, P., Mahapatra, M., & Saeed, M. K. (2021). "Convergence Analysis of a Fifth-Order Iterative Method Using Recurrence Relations and Conditions on the First Derivative."  Mediterr. J. Math., 18, 57. [DOI: 10.1007/s00009-021-01697-6] (SCIE)

 

Qualification

PG - MSc Mathematics - 2018

PhD - PhD in Mathematics - 2024

Specialization

Numerical Analysis, Functional Analysis