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ABSTRACT 
This article describes the creation of a "Smart Tray" prototype 
that uses IoT and object recognition to improve supermarket 
inventory management for busy homes. The Smart Tray 
detects and counts fruits and vegetables placed on it, allowing 
for real-time tracking of shopping stock. When the count of 
any item goes below a certain threshold, the system notifies the 
user, ensuring immediate restocking. Also, the prototype 
allows customers to place orders directly with shops via an 
integrated interface, which increases convenience.The 
motivation for this initiative comes from the usual issues that 
working families experience when managing and keeping 
household food. The Smart Tray automates inventory checks, 
reducing human labor, lowering the chance of running out of 
essential items, and encouraging effective home management. 
Technologically, the system uses IoT devices and the 
MobileNet SSD (Single Shot Detector) model to reliably 
recognize and categorize fruits and vegetables. A custom 
dataset is used to train the model, allowing for real-time item 
recognition and tracking.This study also looks at the larger 
implications of IoT-based inventory systems, such as their 
potential use in smart homes and retail contexts. Future goals 
include publishing this study to help advance academic and 
industrial understanding. 
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1.​ INTRODUCTION 
In the modern era, technology continues to transform 

everyday life, making tasks more efficient and convenient. 
Household inventory management is one important area 
where innovation can have a big influence. Families 
frequently find it difficult to keep an eye on their grocery 
supplies due to busy schedules and demanding lifestyles, 
which can result in instances where necessary items run 
out of stock without warning. The idea of a "Smart 
Tray"—an Internet of Things-based device that combines 
object identification and real-time tracking to automate the 
supermarket management process—was created in order 
to address this difficulty. 

The Smart Tray represents a fusion of Internet of Things 
(IoT) technology and Artificial Intelligence (AI), designed 
to cater to the needs of busy households. The Smart Tray 
uses object detection algorithms to accurately detect and 
count food items like fruits and vegetables in real time, 
utilizing IoT-enabled devices. To ensure prompt 
restocking, the system notifies the user's mobile device 

when the amount of an item drops below a predetermined 
threshold. The tray also makes it possible to place orders 
with store owners directly, which expedites the process of 
restocking necessary supplies. 

SSD MobileNetV3 model, trained on a modified 
version of the Fruit-360 dataset, is at the heart of the Smart 
Tray. Real-time, exact fruit and vegetable identification 
and categorization are made possible by our lightweight 
deep learning model. The system's components are 
processed and integrated easily due to the hardware 
configuration, which is based on the small and powerful 
Raspberry Pi 5. The Smart Tray provides an example of 
how new technologies may improve and automate 
household tasks when used in combination with 
Python-based software and tools such as PyTorch and 
OpenCV. 

The increasing necessity for automation in daily life is 
the motivation behind this initiative. Particularly for 
working families, traditional supermarket management 
techniques that require manual checks and repeated trips 
to the shop can be ineffective and time-consuming. The 
Smart Tray aims to solve these inefficiencies by offering a 
practical, automated solution that improves household 
management, minimizes human labor, and avoids 
stockouts. 

The Smart Tray idea has greater potential for smart 
homes system in addition to its immediate usage in 
houses. This research demonstrates how technology may 
enhance inventory management, reduce down on food 
waste, and enhance decision-making by combining IoT 
with object identification. The Smart Tray, as a prototype, 
also provides a basis for further advancements in the field, 
offering chances for improved scalability, functionality, 
and commercial applications. 

 
The Smart Tray's methodology and implementation are 

described in this document, with a focus on the integration 
of hardware and software components, object detection 
model training and deployment, and system testing under 
real-world situations. The findings show the revolutionary 
impact of AI and IoT in daily life while attempting to 
advance academic and industry understanding of 
IoT-based inventory management solutions. 
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2.​ LITERATURE REVIEW 
  This paper by Faisal Mehmood, Israr Ullah, Shabir 
Ahmad, DoHyeun Kim presents a smart home automation 
system using the Single Shot Detector (SSD) algorithm for 
object detection on IoT-enabled embedded devices, with 
AWS cloud-based control and monitoring. Using MQTT 
protocol for communication, the system employs 
Raspberry Pi and camera to detect objects and evaluate 
performance under varying conditions. Results show that 
environmental changes minimally impact processing 
delay, though lighting and frame size affect accuracy. A 
distributed broker design improves load management. This 
research demonstrates effective deployment of deep 
learning in real-time IoT applications, with insights into 
optimizing object detection for smart home environments. 
[1].  

The paper by Horea Muresan and Mihai Oltean 
introduces the Fruits-360 dataset, a high-quality collection 
of over 90,000 images of 131 types of fruits and 
vegetables, aimed at improving fruit classification through 
deep learning. The dataset minimizes background noise 
for accurate object recognition, which is crucial in various 
applications like autonomous robots, augmented reality, 
and fruit harvesting. The authors train a neural network 
using TensorFlow to classify a range of fruits, targeting 
use in complex scenarios like autonomous store 
inspections and agricultural automation. The paper also 
outlines the network's architecture, performance results, 
and future improvements for broader applicability. [2]. 

The work by Muhammed Shahil A K, Jalwa V P, Afnan 
MK, Rababa Kareem K, Muneer V K introduces an 
"Automated Catalogue System using Object Detection" to 
enhance security and wildlife monitoring through 
real-time object recognition. Employing technologies like 
SSD, OpenCV, and MobileNetV3, the system categorizes 
detected objects, capturing images and recording details 
like category, time, date, and confidence level. Designed 
to address challenges in surveillance and animal intrusion 
into human areas, the system provides a user-friendly web 
application for accessible records. By combining accurate 
categorization, image capture, and real-time detection, this 
system offers a versatile tool for security and wildlife 
management, supporting both community safety and 
environmental awareness. [3].  

The paper by Sudharshan Duth P, Jayasimha K presents 
a deep learning-based system for recognizing vegetables, 
addressing challenges in distinguishing visually similar 
varieties (e.g., red tomato vs. red capsicum) by using 
convolutional neural networks (CNNs). Traditional 
methods relying on color, texture, and shape features often 
lead to misclassification due to vegetable color variations 
across ripeness stages. This research achieves an efficient 
intraclass vegetable recognition system with 95.5% 
accuracy by leveraging CNNs to learn complex image 
patterns, enhancing the precision of vegetable detection. 
The study uses 24 vegetable types and highlights CNN’s 
superiority over feature-based methods, advancing 
applications in computer vision for accurate food 
identification. [4].  

 This study by Manya Afonso, Hubert Fonteijn, Felipe 
Schadeck Fiorentin, Dick Lensink, Marcel Mooij, Nanne 
Faber, Gerrit Polder and Ron Wehrens explores the use of 
MaskRCNN for accurately detecting and counting 
tomatoes in greenhouse images, addressing labor-intensive 
manual phenotyping and advancing automation in 
agriculture. MaskRCNN’s object detection and 
segmentation capabilities demonstrate reliable results in 
greenhouse conditions, comparable to or better than those 
achieved in controlled lab settings. The approach 
efficiently manages challenges such as varying lighting, 
colors, and plant positioning, while also implicitly 
learning object depth. This method contributes to the 
broader automation of crop monitoring, benefiting yield 
prediction and easing labor demands in horticulture [5].  

 The paper by Sudharshan Duth P, Jayasimha K presents 
an efficient system for classifying and counting fruits and 
vegetables at checkout counters without barcodes. Using a 
hybrid model that combines EfficientNet for classification 
and a Decision Tree for counting based on weight, this 
solution achieves 80% counting accuracy and rapid 
processing (0.2 seconds per image) on a CPU. The model 
operates without costly GPUs, reducing hardware 
requirements while maintaining speed and accuracy. It 
supports real-time item recognition and inventory 
monitoring, enhancing cashier efficiency and customer 
satisfaction by minimizing errors and long wait times. [6].  

 This paper introduces a deep learning model for 
automatic fruit yield estimation using a modified 
Inception-ResNet architecture trained on synthetic data. 
Aiming to support farmers in decision-making by 
accurately counting fruits even in challenging conditions 
like shadow, occlusion, and overlapping, this approach 
achieves 91% accuracy on real images. By using simulated 
data, the method eliminates the costly need for large, 
labelled datasets. The model’s efficient, real-time 
performance demonstrates its suitability for robotic 
agricultural applications, providing a practical solution to 
traditional, labor-intensive counting processes [7].  

Islam et al. classified food photos using a CNN that was 
created from design using the FOOD-11 dataset.Eleven 
food categories were taken into consideration, including 
dairy, bread, meat, eggs, soup, and products. noodles, fried 
meals, rice, desserts, and fruits. During image 
pre-processing, ZCA whitening was used to cut down on 
redundancy. SGD and Adam optimizer. The photos were 
classified using optimizers.  The accuracy of the model 
was 74.70%. For comparison, they also employed the 
Inception v3 model, which has already been trained on the 
ImageNet dataset. The accuracy of Inception v3 was 
92.86% [8]. 

Jian et al. successfully integrated deep learning and 
machine vision. They developed R-FCN, a deep learning 
technique that combined an area proposal network and a 
completely convolutional neural network for fruit 
detection and localization. The proposed technique 
extracted pixel-level information by convolving the input 
image with FCN. Combining remaining networks gave the 
deep network more feature information to recognize the 
fruit, and deconvolution made it possible to display the 
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detection findings. Following convolution, RPN produced 
a significant number of boxes on the feature area. It 
effectively distinguished between the top and bottom 
regions of the image. Three distinct fruits from various 
states were used for testing, and the public COCO data set 
was used for training. According to the trial results, the 
method used in this work enhances detection accuracy by 
0.71% and 0.33% when compared to the previous system 
that distinguished between apples and oranges. 
Additionally, it had an accuracy of 82.3% in identifying 
bananas, a fruit that is cultivated on large amounts]. By 
visualizing fruit position and detection over a range of 
input images, it reduces the effect of branch and leaf 
blocking, increases picking efficiency, and strengthens the 
system. Their work was limited by the system's increased 
categorization processing time [9]. 

For deep feature extraction, Şengür et al. chose 
pre-trained AlexNet and VGGl6 models. Properties of size 
4096 were extracted from the models' fc6 and fc7 layers. 
The best deep feature sequence for categorizing the food 
image was then created by combining these features in 
various combinations. SVM was then applied to classify 
the combined attributes. The proposed method was tested 
using publicly accessible datasets, FOOD-5K, FOOD-101, 
and FOOD-11, and performance was evaluated using the 
accuracy metric [9].The accuracy of the FOOD-5K dataset 
was 99.00%, while the accuracy of the FOOD-11 and 
FOOD-101 datasets was 88.08% and 62.44%, 
respectively. Also, they improved the CNN model, which 
was already trained on the FOOD-101 dataset and had a 
79.86% accuracy rating. The obtained results were 
compared with a number of different techniques on the 
FOOD-11 and FOOD-101 datasets. It was discovered that 
the proposed method outperformed the others.[10]. 

 

3.​ METHODOLOGY 
The methodology for developing the "Smart 

Tray" prototype was structured in phases, each addressing 
key technical components for a easy integration of IoT, 
object detection, and real-time notifications. The first 
phase involved selecting appropriate hardware, including 
the Raspberry Pi 5, which serves as the core processing 
unit. The second phase focused on data collection and 
model training, where the Fruit-360 dataset was used to 
train an SSD MobileNetV3 model to accurately identify 
and classify various fruits and vegetables. Next, real-time 
object detection was implemented using OpenCV and 
PyTorch on the Raspberry Pi, enabling the system to 
monitor and count items in the tray. The final phase 
integrated an alert system, sending notifications to the user 
when item quantities fall below a set threshold, allowing 
users to place orders through a mobile interface. 
 

3.1 Hardware Setup 
​ The hardware setup aimed to provide a robust 
platform for the Smart Tray's operations. A Raspberry Pi 5 
served as the primary processing unit, chosen for its 
compact size and sufficient computational power for 

running lightweight deep-learning models. A camera 
module was installed to capture high-resolution images of 
the tray's contents. The tray itself was constructed using a 
sturdy base to hold fruits and vegetables securely. 
Powering the Raspberry Pi was a stable and reliable power 
source, ensuring uninterrupted functionality. The hardware 
components were selected for their compatibility, 
cost-effectiveness, and suitability for real-time use cases. 

3.2 Software Development 
​ The software backbone of the Smart Tray was 
implemented in Python, leveraging its rich ecosystem of 
libraries and frameworks. Key technologies included 
PyTorch for deep learning model deployment, OpenCV 
for image processing tasks, and MQTT for IoT 
communication. The system was coded to perform 
multiple tasks, including image capture, preprocessing, 
and feeding the processed images to the object detection 
model. Additional features included a notification system 
that alerts users when an item's count falls below a 
threshold and an interface for placing orders directly from 
a mobile device. 

3.3 Single Shot Multibox Detectors(SSDs) 
​ A Single Shot Detector (SSD) is an innovative 
object detection technique for computer vision. Its ability 
to quickly and accurately recognize and find elements 
within image or video frames sets it apart. SSD is unusual 
in that it can accomplish this in a single run of a deep 
neural network, making it highly effective and ideal for 
real-time applications. SSD does this by utilizing several 
anchor boxes in feature maps with varying aspect ratios. It 
can successfully manage items of varied sizes and shapes 
thanks to these anchor boxes. Also, SSD employs 
multi-scale feature maps to detect items at various sizes, 
ensuring accurate recognition of both large and tiny 
objects in the picture. SSD is a useful tool for work 
requiring many item categories in a single image because 
of its capacity to detect numerous object classes at once. 
The SSD architecture is illustrated in Figure 2 below. 
 

 
Fig 2. SSDs Architecture. 

3.4 MobileNet 
​ MobileNet is a CNN architectural model 
developed for image classification and mobile vision. 
While there are various models, MobileNet stands out 
since it requires very little computing resources for 
transfer learning applications. As a result, it works well 
with mobile devices, embedded systems, and PCs with 
poor computational efficiency or no GPU, all while 
retaining substantial output accuracy. 
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3.4.1 MobileNetV3 
​ MobileNetV3 is a more advanced and efficient 
way to build neural networks for applications like image 
recognition. MobileNetV3 determines the ideal network 
design without the need for human involvement with 
AutoML, a type of machine learning. It uses a mix of 
MnasNet and NetAdapt algorithms to generate an 
approximation design, which is eventually optimized for 
maximum performance. MobileNetV3's core design 
includes "squeeze-and-excitation" blocks, which is one of 
its characteristics. These blocks focus on the most 
important components while ignoring minor details, 
allowing the network to obtain higher-quality data. This 
model was trained using the Coco dataset. This increases 
the network's capacity to understand and recognize 
objects. Figure 3 shows the MobileNetV3 block 
underneath. 
 
 

 
Fig 3. Block of MobileNetV3 

Another innovative element of MobileNetV3 is 
how it optimizes some of its design's more complicated 
components. This eliminates three difficult layers while 
maintaining accuracy and enhancing network 
performance. In trials, MobileNetV3 showed a 25% 
decrease in object identification time compared to earlier 
versions, while keeping the same level of accuracy. 
MobileNetV3 is a more intelligent and cost-effective 
approach of developing neural networks for applications 
such as object detection in photographs. Optimisations, 
automatic learning, and smart design decisions are used to 
make the network quicker and smarter. 

3.5 Dataset 
The Fruit-360 dataset was selected as the primary 

data source for training the object detection model. It 
contains images of 24 distinct fruit and vegetable classes. 
Preprocessing the dataset involved resizing all images to 
224x224 pixels, normalizing pixel values to match the 
input requirements of the SSD MobileNetV3 model, and 
applying data augmentation techniques such as flipping, 
rotation, and brightness adjustments. These preprocessing 
steps ensured the model's ability to generalize across 
diverse conditions, improving its robustness in real-world 
scenarios. 

3.6 Model Training 
The core detection mechanism was built using the 

SSD MobileNetV3 model. Transfer learning was 
employed by fine-tuning pre-trained weights to adapt the 
model to the Fruit-360 dataset. Key training parameters 
included a learning rate of 0.001, a batch size of 32, and 
50 training epochs. The model was trained using a 

supervised learning approach, and metrics such as 
accuracy, precision, recall, and F1-score were used to 
monitor its performance. The trained model demonstrated 
high accuracy in identifying and categorizing fruits and 
vegetables. 

3.7 Real-Time Detection and Notification 
After training, the model was deployed on the 

Raspberry Pi to enable real-time object detection. The 
camera module continuously captured images of the tray's 
contents, which were processed using OpenCV for 
preprocessing and fed to the detection model for inference. 
The model identified the objects, counted them, and 
compared the counts with predefined threshold values. If 
an item's count fell below the threshold, the system sent an 
alert to the user via a mobile notification, using an 
MQTT-based messaging service. The tray also offered an 
interface for users to place grocery orders directly with 
shopkeepers. 

3.8 Testing and Validation 
​ The validation and testing phases revealed both 
strengths and limitations in the model's performance. 
While the model achieved an impressive overall validation 
accuracy of 100% in many epochs and a testing accuracy 
of 99.97%, the results also highlighted areas of concern. 
Notably, there were instances of overfitting, as evidenced 
by significant spikes in validation loss during certain 
epochs, such as Epoch 12 (validation loss: 8.0456) and 
Epoch 26 (validation loss: 16.9590). These fluctuations 
indicate the model's reliance on specific training data 
patterns rather than learning robust, generalizable features. 
Additionally, despite the high test accuracy, minor 
misclassifications were observed, especially in closely 
related classes like apple variants. These shortcomings 
emphasize the need for further optimization, including 
techniques like data augmentation, dropout regularization, 
and improved dataset diversity, to ensure consistent 
performance across diverse real-world scenarios. 

3.9 Challenges and Future Enhancements 
​ While the Smart Tray demonstrated success in its 
core functionalities, it faced limitations in distinguishing 
between visually similar items and maintaining high 
accuracy in poor lighting conditions. Future enhancements 
include expanding the dataset to incorporate additional 
classes, optimizing the model for faster inference on edge 
devices, and adding advanced IoT features like inventory 
analytics and predictive restocking. These improvements 
aim to increase the system's efficiency and broaden its 
applicability. 
 

4.​ DETECTION PERFORMANCE 
The detection performance of the model 

demonstrates high accuracy on the test dataset, achieving 
an overall classification accuracy of 99.97%. However, 
this impressive result may not fully translate to real-world 
scenarios due to certain limitations. While the model 
performed exceptionally well on standard conditions, 



5 
 

issues such as misclassifications in closely related 
categories (e.g., apple variants like apple_red_2) and 
reduced accuracy in low-light environments suggest 
challenges in generalization. Spikes in validation loss 
during training and fluctuations in accuracy further hint at 
overfitting, where the model has learned to perform well 
on training and testing datasets but struggles with unseen 
data or varied conditions. These observations indicate a 
need for enhanced dataset diversity and techniques such as 
data augmentation and regularization to improve detection 
reliability and robustness in real-world applications. 

5.​ CONCLUSION 

The "Smart Tray" project has shown how IoT and AI can 
work together to make grocery management smarter and 
more convenient. By combining object detection, real-time 
notifications, and an easy-to-use interface, the system 
helps track fruits and vegetables effortlessly. During 
testing, the model performed impressively, identifying 
most items with high accuracy and achieving a 
near-perfect testing score of 99.97%. However, the 
journey wasn’t without its challenges. The training process 
showed signs of overfitting, and there were occasional 
errors in identifying similar-looking items. These issues 
remind us that there’s always room to improve, such as 
using more diverse data and refining the model to handle 
real-world complexities better. 

Despite these challenges, the Smart Tray has proven its 
value. It can detect and monitor items, alert users when 
stocks are low, and make life easier for busy families. 
Looking ahead, the system could be enhanced with 
features like connecting to online stores, recognizing a 
wider range of items, and improving energy efficiency. 
This project is just the beginning—a glimpse into how 
smart home technology can simplify everyday tasks and 
make our lives more seamless. 
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